
Appearing in AIPS-98 1

Conditional E�ects in Graphplan �

Corin R. Anderson David E. Smith Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

corin@cs.washington.edu, de2smith@ptolemy.arc.nasa.gov, weld@cs.washington.edu

Abstract

Graphplan has attracted considerable interest because
of its extremely high performance, but the algorithm's
inability to handle action representations more expres-
sive than STRIPS is a major limitation. In particu-
lar, extending Graphplan to handle conditional e�ects
is a surprisingly subtle enterprise. In this paper, we
describe the space of possible alternatives, and then
concentrate on one particular approach we call fac-
tored expansion. Factored expansion splits an action
with conditional e�ects into several new actions called
components, one for each conditional e�ect. Because
these action components are not independent, fac-
tored expansion complicates both the mutual exclu-
sion and backward chaining phases of Graphplan. As
compensation, factored expansion often produces dra-
matically smaller domain models than does the more
obvious full-expansion into exclusive STRIPS actions.
We present experimental results showing that factored
expansion dominates full expansion on large problems.

Introduction

Since Graphplan (Blum & Furst 1995) appears to out-
perform all known STRIPS1 planners, attention is now

�David Smith's current address is Nasa Ames Research
Center, Mail Stop 269-2, Mo�ett Field, CA 94035. We
thank Mark Peot who provided an initial Lisp implementa-
tion of basic Graphplan. Our paper was improved by dis-
cussions with Marc Friedman, Keith Golden, Steve Hanks,
and Todd Millstein. This research was funded by O�ce
of Naval Research Grants N00014-94-1-0060 and N00014-
98-1-0147, by National Science Foundation Grant IRI-
9303461, by ARPA / Rome Labs grant F30602-95-1-0024,
and by a gift from Rockwell International Palo Alto Re-
search Lab.

Copyright c
 1998, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

1Another promising approach is compilation to
SAT (Kautz & Selman 1996), but the only times re-
ported to be competitive with Graphplan were from hand-
generated SAT problems run with a stochastic solver whose
noise parameters were carefully tuned to the problem at
hand. The state of the art in automatic generation of SAT
formulae from STRIPS planning problems is not yet close

focusing on extending Graphplan to handle more ex-
pressive action languages. For example, (Gazen &
Knoblock 1997; Koehler et al. 1997a; 1997b) de-
scribe Graphplan-derivative planners that handle dis-
junction, quanti�cation, and conditional e�ects. This
endeavor is important because the expressive power of
ADL (Pednault 1989) provides a much more conve-
nient way to model complex worlds. In this paper, we
describe a new method for handling conditional e�ects
in Graphplan, and compare this method to previous
work (Gazen & Knoblock 1997; Koehler et al. 1997a;
1997b).
Many of ADL's expressive features are easy to im-

plement in Graphplan, but handling conditional e�ects
is surprisingly tricky. Conditional e�ects allow the de-
scription of a single action with context-dependent ef-
fects. The basic idea is simple: we allow a special when
clause in the syntax of action e�ects. When takes two
arguments, an antecedent and a consequent; execution
of the action will have the consequent's e�ect just in
the case that the antecedent is true immediately before
execution (i.e., much like the action's precondition de-
termines if execution itself is legal | for this reason
the antecedent is sometimes referred to as a secondary
precondition (Pednault 1989)). Note also that, like
an action precondition, the antecedent part refers to
the world before the action is executed while the con-
sequent refers to the world after execution. In this
paper, we restrict the consequent to be a conjunction
of positive or negative literals. Figure 1 illustrates how
conditional e�ects allow one to de�ne a single action
schema that accounts for moving a briefcase that may
possibly contain a paycheck and/or keys.

The Full Expansion Approach

One possible way of dealing with conditional e�ects
in Graphplan, and the way adopted by (Gazen &
Knoblock 1997), is essentially to expand such actions

to Graphplan performance (Kautz, McAllester, & Selman
1996; Ernst, Millstein, & Weld 1997).

move-briefcase (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new)))

:effect (and (at briefcase ?new) (not (at briefcase ?loc))

(when (in paycheck briefcase)

(and (at paycheck ?new)

(not (at paycheck ?loc))))

(when (in keys briefcase)

(and (at keys ?new)

(not (at keys ?loc)))))

Figure 1: Conditional e�ects allow the same
move-briefcase operator to be used when the brief-
case is empty or contains keys and/or paycheck.

into several independent STRIPS operators. As an ex-
ample, the action schema in Figure 1 could be broken
up into four separate STRIPS schemata (as shown in
Figure 2): one for the empty briefcase, one for the
briefcase with paycheck, one for the briefcase with
keys, and one for the briefcase with both paycheck and
keys.

move-briefcase-empty (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(not (in paycheck briefcase))

(not (in keys briefcase)))

:effect (and (at briefcase ?new) (not (at briefcase ?loc)))

move-briefcase-paycheck (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(in paycheck briefcase)

(not (in keys briefcase)))

:effect (and (at briefcase ?new) (not (at briefcase ?loc))

(at paycheck ?new) (not (at paycheck ?loc)))

move-briefcase-keys (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(not (in paycheck briefcase))

(in keys briefcase))

:effect (and (at briefcase ?new) (not (at briefcase ?loc))

(at keys ?new) (not (at keys ?loc)))

move-briefcase-both (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(in paycheck briefcase)

(in keys briefcase))

:effect (and (at briefcase ?new) (not (at briefcase ?loc))

(at paycheck ?new) (not (at paycheck ?loc))

(at keys ?new) (not (at keys ?loc)))

Figure 2: The four STRIPS operators for moving the
briefcase.

The trouble with this approach is that it can result in
an explosion of the number of actions. If a book could
also be in the briefcase, eight action schemata would
be required. If a pen could be in the briefcase, six-
teen action schemata are required, and so forth. More
generally, if an action has n conditional e�ects, each
with m conjuncts in its antecedent, then the number
of independent STRIPS actions required in the worst

case2 is 2nm. This explosion frequently occurs with
quanti�ed conditional e�ects. For the briefcase we re-
ally want to quantify over all items in the briefcase
as shown in Figure 3. In essence, this operator has
one conditional e�ect for each item in the briefcase.
If there were twenty items that could be in the brief-
case, full expansion would yield over a million STRIPS
operators.

move-briefcase (?loc ?new)

:prec (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new)))

:effect (and (at briefcase ?new) (not (at briefcase ?loc))

(forall ?i (when (in ?i briefcase)

(and (at ?i ?new)

(not (at ?i ?loc))))

Figure 3: A quanti�ed conditional operator for moving
the briefcase.

The Factored Expansion Approach

A second possibility for dealing with actions with con-
ditional e�ects, and the one we concentrate on in this
paper, is to consider the conditional e�ects themselves
as the primitive elements handled by Graphplan. In
essence, this makes all e�ects be conditional. For ex-
ample, the action schema in Figure 1 would be inter-
preted as shown in Figure 4.

move-briefcase (?loc ?new)

:effect (when (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new)))

(and (at briefcase ?new)

(not (at briefcase ?loc))))

(when (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(in paycheck briefcase))

(and (at paycheck ?new)

(not (at paycheck ?loc))))

(when (and (at briefcase ?loc) (location ?new)

(not (= ?loc ?new))

(in keys briefcase))

(and (at keys ?new) (not (at keys ?loc))))

Figure 4: Fully conditionalized schema for moving a
briefcase.

The advantage of this \factored expansion" is an in-
crease in performance. By avoiding the need to ex-
pand actions containing conditional e�ects into an ex-
ponential number of plain STRIPS actions, factored

2The number of antecedent conjuncts, m, participates
in the exponent because the behavior of the action varies
as a function of each conjunct | if any one conjunct is false
then the corresponding e�ect is inactive. The worst case
comes about if all nm propositions are distinct in which
case all combinations must be enumerated. The 2nm num-
ber can actually be reduced to nm as explained in (Gazen
& Knoblock 1997), however this is still very large.

expansion yields dramatic speedup. But this increased
performance comes at the expense of complexity:

� Because factored expansion reasons about individual
e�ects of actions (instead of complete actions), more
complex rules are required in order to de�ne the nec-
essary mutual exclusion constraints during planning
graph construction. The most tricky extension stems
from the case when one conditional e�ect is induced
by another | i.e., when it is impossible to execute
one e�ect without causing the other to happen as
well.

� Factored expansion also complicates the backward
chaining search for a working plan in the plan-
ning graph because of the need to perform the
analog of confrontation (Penberthy & Weld 1992;
Weld 1994), i.e., subgoal on the negated precondi-
tions of undesirable conditional e�ects.

The IP
2
Approach

A third possible method for handling conditional ef-
fects is employed by the IP

2 planner (Koehler et al.

1997b). The IP
2 system sits halfway between the full

and factored expansion methods, using techniques sim-
ilar to both. A more thorough discussion of the IP

2

system is made in the empirical results section, after
the requisite Graphplan background is discussed.

Overview

In the next section we brie
y review the basic Graph-
plan algorithm and extend it to handle negated precon-
ditions and disjunction; these extensions are necessary
for handling conditional e�ects. Following the Graph-
plan background, we give a detailed development of
our factored expansion approach with illustrative ex-
amples. Next, we present empirical evidence that fac-
tored expansion yields dramatic performance improve-
ment over full expansion. Finally, we o�er some dis-
cussion of related issues and work and give concluding
remarks.

Graphplan Background

We brie
y summarize the basic operation of the Graph-
plan algorithm as introduced in (Blum & Furst 1995;
1997). Graphplan accepts action schemata in the
STRIPS representation | preconditions are conjunc-
tions of positive literals and e�ects are a conjunction
of positive or negative literals (i.e., composing the add
and delete lists). Graphplan alternates between two
phases: graph expansion and solution extraction. The
graph expansion phase extends a planning graph until
it has achieved a necessary (but insu�cient) condition

for plan existence. The solution extraction phase per-
forms a backward-chaining search for an actual solu-
tion; if no solution is found, the cycle repeats.
The planning graph contains two types of nodes,

proposition nodes and action nodes, arranged into lev-
els. Even-numbered levels contain proposition nodes,
and the zeroth level consists precisely of the proposi-
tions that are true in the initial state of the planning
problem. Nodes in odd-numbered levels correspond to
action instances; there is an odd-numbered node for
each action instance whose preconditions are present
and are mutually consistent at the previous level. Di-
rected edges connect proposition nodes to the action
instances at the next level whose preconditions men-
tion those propositions. And directed edges connect
action nodes to subsequent propositions made true by
the action's e�ects.
The most interesting aspect of Graphplan is its use

of local consistency methods during graph creation |
this appears to yield a dramatic speedup during the
backward chaining search. Graphplan de�nes a binary
mutual exclusion relation (\mutex") between nodes in
the same level as follows:

� Two action instances at level i are mutex if either

{ Interference / Inconsistent E�ects: one action
deletes a precondition or e�ect of another, or

{ Competing needs: the actions have preconditions
that are mutually exclusive at level i� 1.

� Two propositions at level j are mutex if all ways of
achieving the propositions (i.e., actions at level j�1)
are mutex.

Suppose that Graphplan is trying to generate a plan
for a goal with n conjuncts, and it has �nally extended
the planning graph to an even level, i, in which all
goal propositions are present and none are pairwise
mutex. Graphplan now searches for a solution plan
by considering each of the n goals in turn. For each
such proposition at level i, Graphplan chooses an ac-
tion a at level i � 1 that achieves the goal. This is
a backtracking choice | all possible actions must be
considered to guarantee completeness. If a is consis-
tent (non-mutex) with all actions that have been cho-
sen so far at this level, then Graphplan proceeds to
the next goal, otherwise if no such choice is available,
Graphplan backtracks. After Graphplan has found a
consistent set of actions at level i � 1 it recursively
tries to �nd a plan for the set of all the preconditions
of those actions at level i � 2. The base case for the
recursion is level zero | if the propositions are present
there, then Graphplan has found a solution. If, on the
other hand, Graphplan fails to �nd a consistent set of

actions at some level and backtracking is unsuccess-
ful, then it continues to alternate between growing the
planning graph and searching for a solution (until it
reaches a set limit or the graph levels o�).

Negated and Disjunctive Preconditions

Although methods for handling negated and disjunc-
tive preconditions were not presented in (Blum & Furst
1995), they are both straightforward and essential pre-
requisites for handling conditional e�ects. Clearly
proposition p and :p are mutually exclusive in any
given level. Whenever an action instance deletes a
proposition (i.e. has a negated literal as an e�ect), one
must add that negative literal to the subsequent propo-
sition level in the planning graph.

Disjunctive preconditions are also relatively easy.
Conceptually, the precondition (which may contain
nested ands and ors) is converted to disjunctive nor-
mal form (DNF). Now when the planning graph is
extended with an action containing multiple disjuncts,
an action instance may be added if any disjunct has
all of its conjuncts present (non-mutex) in the previous
level. During the backchaining phase, if the planner
at level i considers an action with disjunctive precon-
ditions, then it must consider all possible precondition
disjuncts at level i� 1 to ensure completeness.

Conditional-E�ects Graphplan

The central concept of the factored expansion approach
to handling conditional e�ects is that of an action com-

ponent. Formally, a component is a pair consisting of a
consequent (conjunction of literals) and an antecedent
(disjunction or conjunction is allowed). An action has
one component per e�ect (where e�ect is de�ned in
(Penberthy & Weld 1992, Section 2.3)). A compo-
nent's antecedent is simply the action's primary pre-
condition conjoined with the antecedent of the corre-
sponding conditional e�ect; a component's consequent
is simply the consequent of the corresponding condi-
tional e�ect.3

Using this approach, every ordinary STRIPS ac-
tion would have only one component. However, ac-
tions with conditional e�ects would have one compo-
nent for the unconditional e�ects, and one component
for each conditional e�ect. As an example suppose
that action A has precondition p and three e�ects e,
(when q (f ^ :g)), and (when (r ^ s) :q). This ac-
tion would have three components:

3Just as it is useful to consider lifted action schemata in
addition to ground actions, we will consider lifted compo-
nent schemata as well as ground components. Unless there
is some potential confusion we shall call both the lifted and
ground versions components.

1. C1 has antecedent p and consequent e.

2. C2 has antecedent p ^ q and consequent f ^ :g.

3. C3 has antecedent p ^ r ^ s and consequent :q.

Revised Mutex Constraints

For the most part, graph expansion works in the same
manner as in the case of STRIPS actions, except at
odd-numbered levels, we add instances of components
instead of action instances. An instance of component
Ci is added when its antecedents are all present and
pairwise non-mutex at the previous proposition level.
For example, if p and q are the only literals present in
level i�1, then level i would contain an instance of C1

and C2 (but not C3). When a component is added to
an odd-numbered level, then its consequent is added
to the subsequent level in the obvious way. Thus, in
our example, e and f and :g would all be added to
level i+ 1. See Figure 6.
So far, this is straightforward, but the handling of

mutex constraints is actually rather subtle. Recall that
mutex constraints are de�ned recursively in terms of
the constraints present at the previous level. The de�-
nition for proposition levels is unchanged from vanilla
Graphplan:

� Two propositions p and q at level j are mutex if all
ways of achieving p (i.e. all level j � 1 components
whose consequents include p as a positive literal) are
pairwise mutex with all ways of achieving q.

There are two changes to the de�nition of mutex
constraints for components. The interference condi-
tion (originally de�ned in the Graphplan Background
section) has an extra clause (so it implies fewer mutex
relations), and there is also a new way of deriving a
mutex relation, the induced component condition:

� Two components Cn and Cm at level i are mutex if
either:

{ Interference / Inconsistent E�ects: components
Cn and Cm come from di�erent action instances
and the consequent of component Cn deletes either
an antecedent or consequent of Cm (or vice versa),
or

{ Competing Needs: Cn and Cm have antecedents
that are mutex at level i� 1, or

{ Induced component: There exists a third compo-
nent Ck that is mutex with Cm and Ck is induced
by Cn at level i (see de�nition below and Figure 5).

Intuitively, component Cn induces Ck at level i if
it is impossible to execute Cn without executing Ck;
more formally, we require that:

 C m

 C n

 C k

 mutex

 induces
 C m

 C n

 C k

 mutex

 induces

 mutex
 Hence

Figure 5: If Cn induces Ck and Ck is mutex with Cm,
then Cn is also mutex with Cm.

1. Cn and Ck derive from the same action schema with
the same variable bindings, and

2. Ck is non-mutex with Cn, and

3. the negation of Ck's antecedent cannot be satis�ed
at level i� 1. In other words, suppose that the an-
tecedent of Ck is p1 ^ : : :^ ps, then we require that,
for all j, either :pj is absent from level i� 1 or :pj
is mutex with a conjunct of Cn's antecedent.

We now discuss in more detail the two di�erences
between our de�nition of mutual exclusion and the def-
inition used by vanilla Graphplan.

Interference Our �rst change to the mutex de�ni-
tion reduces the number of mutexes by adding a con-
junct to the interference clause. This is because ac-
tions often clobber their own preconditions. For ex-
ample, one can't put one block on another unless the
destination is clear, yet the act of putting the block
down makes the destination be not clear. This self-
clobbering behavior doesn't bother Graphplan (be-
cause a STRIPS action's e�ects are never compared
to its preconditions), and our modi�cation of the in-
terference condition is simply a small generalization
to ensure that there is no problem (i.e. no mutex con-
straint generated) when one conditional e�ect clobbers
the antecedent of another conditional e�ect of the same

action. (Note that this generalization is only necessary
for factored expansion | if full expansion is used, the
vanilla de�nition of interference is �ne.)

Induced components Our second change to the
mutex de�nition is an optimization that increases the
number of mutexes through the notion of induction.
A few examples will make the de�nition of induced
component more intuitive, show why the notion of
component induction is level-dependent, and explain
how it �ts into the mutex picture. First, consider a
simple case: component C2 (from the example ear-
lier) induces C1 because both components come from
action A and the antecedent of C2 is p ^ q, which
entails p. Thus, any plan that relies on the ef-
fects of C2 had better count on the e�ects of C1

q

p

C2

C1

induces
e

f

g

q

p

Level i-1 Level i Level i+1

Figure 6: An example of an induced component.

as well | there is no way to avoid them using the
equivalent of confrontation (Penberthy & Weld 1992;
Weld 1994). Essentially, we are recording the impos-
sibility of executing the conditional part of an action
(C2) without executing the unconditional part (C1) as
well. Hence we say that C1 is induced by C2 (Fig-
ure 6). Thus if C1 is mutex with some component Cm

from a di�erent action, then C2 should be considered
mutex with Cm as well because execution of C2 induces
execution of C1 that precludes execution of Cm.

While C2 induces C1 at every level, there are cases
where the set of induced components is level depen-
dent. Suppose that proposition level i � 1 contains q
but does not contain :q. Can the negation of C2's
antecedent be made true at level i � 1? Since :q is
not present at level i � 1, the only way to avoid C2

is to require :p at level i � 1. However, :p is mutex
with p, which is the antecedent of C1. Hence at level
i, component C1 induces C2 as well | there is no way
to execute C1 (at this level) without executing C2 as
well.

Suppose that action B has spawned component Cm,
which has no antecedent and has g as consequent. Fur-
thermore, suppose that the goal is to achieve g^ e and
that precisely three components C1; C2, and Cm are
present in level i. Since C1 (which produces e) induces
C2 (at level i) which deletes g, C1 is mutex with Cm

at level i. Thus g and e are mutex at i+1, which cor-
rectly re
ects the impossibility of achieving both goals
(Figure 7).

On the other hand, suppose that :q was present
at i � 1. Then the negation of C2's antecedent could
be made true, and C1 would not induce C2 at level i.
Hence, C1 would not be mutex with Cm. This correctly
re
ects the possibility of confrontation, and below we
show how to modify the backward chaining search to
ensure that :q is raised as a goal at level i� 1 if C1 is
chosen to support e and Cm is chosen to support g.

q

p

C2

C1

induces
e

f

g

q

p

Level i-1 Level i Level i+1

Cm
g

mutex mutex mutex

mutex

Figure 7: Since induction makes C1 mutex with Cm,
additional mutex relations are added at proposition
level i+ 1.

Revised Backchaining Method

As the discussion of induced components suggested,
factored expansion of context-dependent actions into
components also complicates the backchaining search
for solution plans.

Here's a simple example that illustrates the issues.
Action D has precondition p and two e�ects e, and
the conditional e�ect (when q f). Factored expansion
yields two components:

1. C4 has antecedent p and consequent e.

2. C5 has antecedent p ^ q and consequent f .

First, let's consider how the backward chaining
phase of Graphplan normally works. Suppose that
level i � 1 has p; q and :f present. Thus level i has
components C4 and C5 present. Suppose that no other
components are present except for the no-op compo-
nents that carry :f etc. forward. If the goal is f then
one way to achieve the goal at i+ 1 is via component
C5 and so the backward chainer will subgoal on p ^ q
at level i� 1.

Now consider the more interesting case where the
goal is e ^ :f (Figure 8). The planner must consider
using C4 to achieve e and using a no-op to maintain :f ,
but it must ensure that component C5 doesn't clobber
:f . Thus the planner must do the equivalent of con-
frontation | subgoaling on the negation of C5's an-
tecedent. Thus the goal for level i� 1 is p ^ :(p ^ q),
which simpli�es to p ^ :q.

As a �nal example, consider the following world (Fig-
ure 9). Action A has no preconditions and has two
e�ects: g and (when r :h); action B also has no pre-
conditions and has e�ects h and (when z r). Factored
expansion yields four components from these actions:
A1, A2, B1, and B2. Suppose that the propositions

q

p

C4 e

f

q

q

p

Level i-1 Level i Level i+1

C5

q

ff

Figure 8: Planning graph when backchaining occurs;
in order to prevent C5 from clobbering :f the planner
must use confrontation to subgoal on :q at level i� 1.

r

B2

g

h

r

Level i-1 Level i Level i+1

B1

z z

r

A1

Figure 9: Even though A2 does not appear in the plan-
ning graph, the component may �re if action B is taken
before action A.

at level i � 1 are :r ^ z and the goals are g ^ h. In
this case three of the components are present, but A2

with e�ect :h is absent because its precondition r is
not present at i� 1.

Because the goals are present at level i+1, supported
by the non-mutex components A1 and B1, it would
seem that a plan that executes actions A and B, in
either order, would be correct. However, in reality, the
order in which these actions are executed does matter.
If action B were executed �rst, then both B1 and B2

would �re (all of B2's preconditions hold at level i �
1). B2 establishes the r proposition, and thus, when
action A is executed, the preconditions of component
A2 are true. Hence, A2 also �res, and clobbers the
goal h | but A2 wasn't even in the planning graph

at this level. The observation to be made from this
example is that, even though a component may not
occur in the planning graph at a particular level, it
may be necessary to confront that component at that
level anyway.

With these examples in mind, we are nearly ready to
present the general algorithm for backchaining search.
To make the presentation simpler, we de�ne one more
term. We say that component Cm is possibly in-

duced by component Cs if Cm and Cs are both derived
from the same action with the same variable bindings.
Note that Cs possibly induces Cs. The algorithm for
backchaining can now be expressed as follows:

1. Let SCi fg. SCi is the set of components
selected at level i to support the goals at level i+ 1.

2. For each goal g at level i + 1, choose (backtrack
point) a supporting component Cs at level i that has g
as an e�ect and that is non-mutex with the components
in SCi.

2.1 If Cs is not already in SCi, then add Cs to SCi
and add the preconditions of Cs to the goals for level
i� 1.

3. For each pair of components Cs, Ct in SCi, con-
sider all pairs of components Cm, Cn, where Cs pos-
sibly induces Cm and Ct possibly induces Cn. If Cm

and Cn are mutex, then we must choose (backtrack
point) one of Cm or Cn to confront (see discussion of
confrontation below).

4. If i = 1, then the completed plan is the set
of actions from which the components in SC1, SC3,
SC5, . . . belong. Otherwise, reduce i by 2 and repeat.

The remaining detail in this algorithm is the han-
dling of confrontation. Let's suppose that component
Cn is to be confronted. Confrontation involves con-
straints at two time points. First, the antecedent of
Cn must be prevented from being true at the previous
proposition level, i� 1. Second, the antecedent of Cn

must not be allowed to become true under any order-
ing of the steps at level i. Otherwise, Cn might �re, if
the action to which Cn belongs is executed after some
other component establishes Cn's antecedent.

There are several ways to satisfy both of these
requirements for confrontation. Perhaps the most
straightforward, and the one that we implement, is
to simply add one or more no-ops to SCi that carry
the negation of Cn's antecedent

4 from level i � 1 to
i+ 1. The preconditions of the no-ops satisfy the �rst
requirement from above (i.e., that Cn's antecedent not
be true at level i�1). And, by selecting the no-ops, no
other component that makes Cn's antecedent true can
be selected at level i because it would violate mutex
relations with a no-op.

Note that there are optimizations to this rule. If a
particular no-op that we wish to select is not available
at level i, then there is no way that the corresponding
term of Cn's antecedent could be made false at this
level. Thus, the planner can immediately disregard all

4Note that there may be search required in this process.
If the negation of Cn's antecedent is disjunctive, then we
choose (backtrack point) one disjunct and add its no-op. If,
on the other hand, the negated antecedent is conjunctive,
then we must add no-ops for each conjunct.

no-op sets that include any no-ops not present at level
i. Also, when negating the antecedent of Cn, some
logic simpli�cation may be possible, as was the case in
the example above.

There are also several optimizations to the new
backchaining search algorithm that one could adopt
(and that we have adopted). One optimization is to
roll steps 2 and 3 together, confronting possibly in-
duced components as SCi is being grown. Another
optimization is in the choice between Cm and Cn in
step 3. If Cm or Cn are already in SCi, then that com-
ponent cannot be confronted, and confrontation on the
other must be attempted. Similarly, if one of Cm or Cn

has already been confronted, either successfully or un-
successfully, a second attempt at confrontation won't
prove otherwise.

Expansion time

Besides the choice of expansion method when imple-
menting conditional e�ects, one must also make a
choice of expansion time. With compile-time expan-
sion, one creates new components before starting to
construct the planning graph. With run-time expan-
sion one performs this expansion as each level in the
graph is built.

Both full and factored expansion allow operators to
be broken up into components at either compile- or
run-time. The advantage to compile-time expansion
is that the expansion is performed only once. The
disadvantage is that, for full-expansion, there may be
exponentially many components to create at expan-
sion time. This is not an issue for factored expan-
sion, though, where the number of components is linear
with the number of conditionals. Thus, compile-time
expansion is an attractive choice when implementing
factored expansion. Note, however, that even though
the operators can be factored into their components

at compile-time, if one chooses to use factored expan-
sion, the induces relation must still be determined at
run-time (because induction can be level dependent).

One really can't avoid the exponential blow-up prob-
lem with full expansion, although one can put it o� for
as long as possible. Using run-time expansion, each
operator is expanded into only those components that
are applicable at the current level. This method al-
lows the planner to not create all the components at
once, but rather create only those components that
are valid at each level. The downside of this method
is the added computational overhead of the expansion
at each level. But this overhead is usually much less
than that of creating exponentially many components
initially. Hence, run-time expansion is a good comple-
ment to full-expansion.

Empirical Results

We conducted two experiments to evaluate methods of
handling conditional e�ects in Graphplan. In the �rst
experiment, we compared full expansion to factored
expansion in our implementation of Graphplan. In the
second experiment, we compared factored expansion to
IP

2 (Koehler et al. 1997b).

Full Expansion vs. Factored Expansion

In our comparison of full vs. factored expansion, the
full expansion was done at run-time while the factored
expansion was performed at compile-time. Both meth-
ods are part of the same implementation, written in
Common Lisp. Experiments were carried out on a
200 MHz PentiumPro workstation running Linux.

We ran both planners on a series of problems from
several domains that use conditional e�ects. The gen-
eral trend was that for \easy" problems (problems
whose plan could be found within about a second), the
full expansion method was faster than the factored ex-
pansion method. But when the planner required more
than a few seconds to �nd a plan, the factored ex-
pansion method ran faster. Three experiments that
highlight this trend were performed in the Briefcase
World domain, the Truckworld domain and the Movie
Watching domain.

The Briefcase World and the Truckworld exper-
iments are a series of problems parameterized by
the number of objects in the world. The Briefcase
World experiment involves moving objects from home
to school. The Truckworld problems require moving
pieces of glass from one location to another, without
breaking the glass.

The Movie Watching domain involves problems of
preparing to watch a movie at home. Preparation in-
cludes rewinding the movie, resetting the time counter
on the VCR, and fetching snacks to be eaten during the
movie. The problems in this experiment are parame-
terized by the number of possibilities for each snack-
food (for instance, there are 5, 6, or 7 bags of chips,
and only bag is necessary to achieve the goal).

Figure 10 shows a performance comparison between
the full and factored expansion methods. Each data-
point represents a problem from one of the three ex-
periments, averaged over �ve trials. Standard devia-
tion values range from 1% to 8% of the mean values.
Points above the line are problems for which factored
expansion Graphplan runs faster than full expansion
Graphplan.

We can see from this �gure that the larger problems
in the Briefcase World and Truckworld domains cause
great di�culty for full expansion. The performance
decrease comes from the fact that these problems give

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

T
im

e
fo

r
F

ul
l E

xp
an

si
on

 (
se

co
nd

s)

Time for Factored Expansion (seconds)

Performance comparison of Full Expansion vs. Factored Expansion

Truckworld problems
Movie Watching problems
Briefcase World problems

Figure 10: Performance comparison of factored expan-
sion versus full expansion. Datapoints represent pa-
rameterized problems in the Briefcase World, Truck-
world and Movie Watching domains. The line sepa-
rates the problems for which factored expansion runs
faster (datapoints above the line) from problems for
which full expansion runs faster (datapoints below the
line).

rise to an exponential number of fully-expanded ac-
tions. Because factored expansion creates only a lin-
ear number of components with respect to the number
of objects, factored expansion's performance doesn't
su�er. We also note in this �gure that both methods
perform equally well in the Movie Watching domain.
By using full expansion, the planner doesn't need to
reason about induced mutexes explicitly, whereas in-
duced mutexes are detected explicitly by the factored
expansion algorithm.

IP
2
vs. Factored Expansion

In the IP
2 system, conditional e�ects are handled in a

way that is somewhat similar to our factored expan-
sion. The primary di�erences are that (a) actions are
considered as whole units with separate e�ect clauses
for each conditional e�ect; (b) two actions are marked
as mutex only if their unconditional e�ects and precon-
ditions are in con
ict, and (c) atomic negation is not
handled explicitly by the algorithm. These di�erences
allow IP

2 to use simpler mutex rules, but reduce the
number of mutex constraints that will be found.

When planning problems don't involve mutexes be-
tween the conditional e�ects of several actions, the
performance of IP

2 and factored expansion are simi-

lar. However, in the Movie Watching domain, IP2 does
not perform as well because it does not identify the in-
duced mutex between the goals at level 2. Because of
this, IP2 has to conduct a great deal of search at level
2 before it can be sure that the goals are not satis�able
at this level.

In our comparison experiment between the C im-
plementation of IP

2 and the Lisp implementation of
factored expansion, we ran both systems on the three
domains used in the full versus factored expansion ex-
periment. A logscale plot of the results appears in
Figure 11.

0.01

0.1

1

10

100

0.01 0.1 1 10 100

T
im

e
fo

r
IP

P
 (

se
co

nd
s)

Time for Factored Expansion (seconds)

Performance comparison of Factored Expansion vs. IPP

Truckworld problems
Movie Watching problems
Briefcase World problems

Figure 11: Performance comparison of IP2 version 3.2
(C) vs. factored expansion (Lisp). Times taken on a
200 MHz PentiumPro Linux workstation with 64MB
RAM. Datapoints represent problems from the Brief-
case World, Truckworld and Movie Watching domains.
The line separates the problems for which factored ex-
pansion ran faster (datapoints above the line) from
problems for which IP

2 ran faster (datapoints below
the line).

The datasets in this experiment tell us three things.
First, the Movie Watching problems show that, when
induced mutexes are not identi�ed, the resulting un-
necessary search is expensive. Factored expansion
Graphplan doesn't search for a solution until the fourth
level in the planning graph, while IP

2 begins its search
after the second level is added. Second, the Briefcase
World problems show that the time to extend the plan-
ning graph is sometimes as important, if not more so,
than the time to search the planning graph.5 In the

5See (Kambhampati, Lambrecht, & Parker 1997) for

Briefcase World problems, the time is heavily domi-
nated by graph expansion. IP

2 is highly optimized for
this task, while our factored expansion implementa-
tion doesn't have any such optimizations. Finally, the
Truckworld problems show that there are domains for
which IP

2 and Factored Expansion have similar perfor-
mance.

Related Work

Since publication of the original Graphplan pa-
pers (Blum & Furst 1995; 1997), several researchers
have investigated means for extending the algorithm
to handle more expressive action languages. As dis-
cussed earlier, IP2 (Koehler et al. 1997b) is a Graph-
plan derivative that uses a technique similar to factored
expansion, although induced mutex relationships are
not discovered. IP2 also includes a number of optimiza-
tions that greatly improve its performance. One opti-
mization precalculates all the ground instances of the
operators in the input domain. By generating a com-
plete set of legal instantiations of operators, no type
checks or uni�cations are necessary during graph ex-
pansion. Another optimization removes facts and op-
erators that are deemed irrelevant to the goal (Nebel,
Dimopoulos, & Koehler 1997). A third optimization
removes inertia, facts that are true at all graph lev-
els. In domains that have static attributes associated
with objects, removing inertia greatly improves perfor-
mance { these static facts don't have to be considered
when extending the planning graph or when searching
backwards through the graph.

In (Gazen & Knoblock 1997), a preprocessor has
been de�ned and implemented to convert UCPOP-
style domains into simpler STRIPS style domains.
This preprocessor allows Graphplan to solve problems
whose de�nitions are given in the full expressiveness of
ADL. In this work, conditional e�ects are handled by
a compile-time full-expansion of each operator.

Kambhampati's group has considered several exten-
sions to Graphplan. For example, (Kambhampati,
Lambrecht, & Parker 1997) describes how to imple-
ment negated and disjunctive preconditions in Graph-
plan, and also sketches the full expansion strategy for
handling conditional e�ects. Their paper also hints
that an approach like our factored method might prove
more e�cient, but does not appear to recognize the
need for either revisions to the mutex de�nition in or-
der to account for induced components, or for con-
frontation during backchaining.

additional discussion on this matter plus an impressive
regression-based focussing technique for optimizing graph
expansion.

Conclusions

In this paper, we've introduced the factored expan-
sion method for implementing conditional e�ects in
Graphplan. The principle ideas behind factored ex-
pansion are 1) breaking the action into its components,
2) modifying the rules for mutual exclusion by adding
the notion of mutexes from induced components, and
3) modifying the rules for backchaining to incorporate
confrontation.

We compared factored expansion to full ex-
pansion (Gazen & Knoblock 1997) and the IP

2

method (Koehler et al. 1997a). There appear to be
two potential forms of combinatorial explosion:

� Instantiation Explosion. As illustrated in Fig-
ure 2, the full expansion approach can compile an
action containing conditional e�ects into an expo-
nential number of STRIPS actions. Neither factored
expansion nor the IP

2 method fall prey to this prob-
lem.

� Unnecessary Backchaining. Since the IP
2

method deduces a subset of the possible mutex re-
lations, it will sometimes be fooled into thinking a
solution exists and hence will waste time in exhaus-
tive backchaining before it realizes its mistake. This
was illustrated in the Movie Watching domain in
Figure 11. Neither full expansion nor factored ex-
pansion have this problem.

We close by noting that e�cient handling of con-
ditional e�ects is just one aspect of a fast planning
system. As noted earlier, IP2 has several orthogonal
optimizations that are also worthwhile for some of the
domains we tested.

References
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proc. 14th Int. Joint Conf.
AI, 1636{1642.

Blum, A., and Furst, M. 1997. Fast planning through
planning graph analysis. J. Arti�cial Intelligence 90(1{
2):281{300.

Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic
sat-compilation of planning problems. In Proc. 15th Int.
Joint Conf. AI.

Gazen, B., and Knoblock, C. 1997. Combining the ex-
pressivity of UCPOP with the e�ciency of Graphplan. In
Proc. 4th European Conference on Planning.

Kambhampati, R.; Lambrecht, E.; and Parker, E. 1997.
Understanding and extending graphplan. In Proc. 4th Eu-
ropean Conference on Planning.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. 13th Nat. Conf. AI, 1194{1201.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encod-
ing plans in propositional logic. In Proc. 5th Int. Conf.
Principles of Knowledge Representation and Reasoning.

Koehler, J.; Nebel, B.; Ho�mann, J.; and Dimopoulos, Y.
1997a. Extending planning graphs to an ADL subset. In
Proc. 4th European Conference on Planning.

Koehler, J.; Nebel, B.; Ho�mann, J.; and Di-
mopoulos, Y. 1997b. Extending planning
graphs to an ADL subset. TR 88, Institute
for Computer Science, University of Freiburg.
See http://www.informatik.uni-freiburg.de/~

koehler/ipp.html.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Proc.
4th European Conference on Planning.

Pednault, E. 1989. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc. 1st Int.
Conf. Principles of Knowledge Representation and Rea-
soning, 324{332.

Penberthy, J., and Weld, D. 1992. UCPOP: A
sound, complete, partial order planner for ADL.
In Proc. 3rd Int. Conf. Principles of Knowledge
Representation and Reasoning, 103{114. See also
http://www.cs.washington.edu/research/projects/

ai/www/ucpop.html.

Weld, D. 1994. An introduction to least-commitment
planning. AI Magazine 27{61. Available at ftp://ftp.-
cs.washington.edu/pub/ai/.

